視頻監(jiān)控中的多目標(biāo)跟蹤(MTT)是一項重要而富有挑戰(zhàn)性的任務(wù),由于其在各個領(lǐng)域的潛在應(yīng)用而引起了研究人員的大量關(guān)注。多目標(biāo)跟蹤任務(wù)需要在每幀中單獨定位目標(biāo),這仍然是一個巨大的挑戰(zhàn),因為目標(biāo)的外觀會立即發(fā)生變化,并且會出現(xiàn)極端的遮擋。除此之外,多目標(biāo)跟蹤框架需要執(zhí)行多個任務(wù),即目標(biāo)檢測、軌跡估計、幀間關(guān)聯(lián)和重新識別。多目標(biāo)跟蹤分為目標(biāo)檢測和跟蹤兩個主要任務(wù)。為了區(qū)分組內(nèi)對象,MTT算法將ID與在特定時間內(nèi)保持特定于該對象的每個檢測到的對象相關(guān)聯(lián)。然后利用這些ID來生成被跟蹤對象的運(yùn)動軌跡?;垡昍K3588板卡可以用于大型公共停車場。無源目標(biāo)跟蹤功能目標(biāo)跟蹤YOLO算法具有以下幾個明顯的優(yōu)勢:快速...
目標(biāo)跟蹤是計算機(jī)視覺研究領(lǐng)域的熱點之一,并得到廣泛應(yīng)用。相機(jī)的跟蹤對焦、無人機(jī)的自動目標(biāo)跟蹤等都需要用到了目標(biāo)跟蹤技術(shù)。另外還有特定物體的跟蹤,比如人體跟蹤,交通監(jiān)控系統(tǒng)中的車輛跟蹤,人臉跟蹤和智能交互系統(tǒng)中的手勢跟蹤等。簡單來說,目標(biāo)跟蹤就是在連續(xù)的視頻序列中,建立所要跟蹤物體的位置關(guān)系,得到物體完整的運(yùn)動軌跡。給定圖像首幀的目標(biāo)坐標(biāo)位置,計算在下一幀圖像中目標(biāo)的確切位置。在運(yùn)動的過程中,目標(biāo)可能會呈現(xiàn)一些圖像上的變化,比如姿態(tài)或形狀的變化、尺度的變化、背景遮擋或光線亮度的變化等。目標(biāo)跟蹤算法的研究也圍繞著解決這些變化和具體的應(yīng)用展開。跟蹤算法能夠支持定制不?智能化目標(biāo)跟蹤推薦廠家目標(biāo)跟蹤目...
目標(biāo)跟蹤(Target Tracking)是近年來計算機(jī)視覺領(lǐng)域比較活躍的研究方向之一,它包含從目標(biāo)的圖像序列中檢測、分類、識別、跟蹤并對其行為進(jìn)行理解和描述,屬于圖像分析和理解的范疇。從技術(shù)角度而言,目標(biāo)跟蹤的研究內(nèi)容相當(dāng)豐富,主要涉及到模式識別、圖像處理、計算機(jī)視覺、人工智能等學(xué)科知識;同時,動態(tài)場景中運(yùn)動的快速分割、目標(biāo)的非剛性運(yùn)動、目標(biāo)自遮擋和目標(biāo)之間互遮擋的處理等問題也為目標(biāo)跟蹤研究帶來了一定的挑戰(zhàn)。由于目標(biāo)跟蹤在視頻會議、安全監(jiān)控、導(dǎo)彈制導(dǎo)、醫(yī)療診斷、高級人機(jī)交互及基于內(nèi)容的圖像存儲與檢索等方面具有廣泛的應(yīng)用前景和潛在的經(jīng)濟(jì)價值。RK3399搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤。快...
目標(biāo)檢測和跟蹤是計算機(jī)視覺領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實時目標(biāo)檢測和跟蹤領(lǐng)域具有重要地位的算法。通過引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實時目標(biāo)檢測和跟蹤領(lǐng)域發(fā)揮更大的作用?;垡暪怆婇_發(fā)的慧視RV1126圖像處理板,采用了國產(chǎn)高性能CPU。寧夏目標(biāo)跟蹤廠家電話目標(biāo)跟蹤隨著社區(qū)等安防向著智能化的進(jìn)一步發(fā)展,...
YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進(jìn)行目標(biāo)檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實時應(yīng)用。準(zhǔn)確性較高:通過引入先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標(biāo)定位和類別預(yù)測方面具有較高的準(zhǔn)確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標(biāo),并保持對小目標(biāo)的有效檢測。端到端訓(xùn)練:YOLO算法可以進(jìn)行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實現(xiàn)和使用。Viztra-LE034圖像跟蹤板支持目標(biāo)跟蹤識別目標(biāo)(人、車)。湖南目標(biāo)跟蹤進(jìn)貨價目標(biāo)跟蹤在智慧農(nóng)業(yè)領(lǐng)域可以分為人工干涉和無人值守2種...
自動化的視頻跟蹤系統(tǒng)的工作流程一般是攝像機(jī)的模擬信號通過視頻電纜傳送至計算機(jī),計算機(jī)通過視頻采集卡將模擬視頻信號轉(zhuǎn)換為數(shù)字視頻信號,該轉(zhuǎn)換的輸出的數(shù)字圖像一方面在計算機(jī)CRT上顯示,同時傳送至內(nèi)存進(jìn)行目標(biāo)檢測或跟蹤(根據(jù)需要可同時進(jìn)行硬盤錄像),計算機(jī)根據(jù)算法的運(yùn)算結(jié)果來控制攝像機(jī)的云臺,這個控制過程是通過通訊協(xié)議卡和雙絞線電纜和攝像機(jī)的云臺接口來完成的。監(jiān)視和跟蹤系統(tǒng)的啟動可以是人工的,也可以由系統(tǒng)的報警輸入設(shè)備啟動。高性能的圖像卡一般自帶顯卡,能夠避免廉價的多媒體卡長時間地、連續(xù)地通過總線傳送到計算機(jī)的顯存而帶來的死屏、CPU的占用及總線的占用等問題?;垡暪怆娀贏I圖像處理的監(jiān)控監(jiān)管方案...
如今,無人機(jī)在我們生活中的應(yīng)用越來越廣。例如無人機(jī)巡檢安防領(lǐng)域,無人機(jī)能夠到達(dá)人無法觸及的一些角度,能夠很大程度上擴(kuò)大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機(jī)效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機(jī)都是可見光相機(jī),在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。RK3399搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤。如何目標(biāo)跟蹤要多少錢目標(biāo)跟蹤很多跟蹤方法都是對通用目標(biāo)的跟蹤,...
2010年以前,目標(biāo)跟蹤領(lǐng)域大部分采用一些經(jīng)典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標(biāo)的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標(biāo)進(jìn)行建模,比如利用目標(biāo)的顏色分布來描述目標(biāo),然后計算目標(biāo)在下一幀圖像上的概率分布,從而迭代得到局部密集的區(qū)域。Meanshift適用于目標(biāo)的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進(jìn)方法也一直適用至今。全國產(chǎn)...
相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現(xiàn)了檢測的過程。在訓(xùn)練分類器時,一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本?;仡櫱懊嫣岬降腡LD或Struck,他們都會在每一幀中隨機(jī)地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機(jī)子窗口的特征,而CSK作者設(shè)計了一個密集采樣的框架,能夠?qū)W習(xí)到一個區(qū)域內(nèi)所有圖像塊的特征。RV1126搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤??孔V的目標(biāo)跟蹤誠信推薦目標(biāo)跟蹤YOLO算法具有以下幾個明顯的優(yōu)勢:...
相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現(xiàn)了檢測的過程。在訓(xùn)練分類器時,一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本?;仡櫱懊嫣岬降腡LD或Struck,他們都會在每一幀中隨機(jī)地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機(jī)子窗口的特征,而CSK作者設(shè)計了一個密集采樣的框架,能夠?qū)W習(xí)到一個區(qū)域內(nèi)所有圖像塊的特征。成都RK3588智能跟蹤板提供商。甘肅目標(biāo)跟蹤功效目標(biāo)跟蹤自動化的視頻跟蹤系統(tǒng)的工作流程一般是攝像機(jī)的模擬信號通過視...
檢測器的輸出通常被用作跟蹤設(shè)備的輸入,跟蹤設(shè)備的輸出被提供給運(yùn)動預(yù)測算法,該算法預(yù)測物體在接下來的幾秒鐘內(nèi)將移動到哪里。然而,在無檢測跟蹤中,情況并非如此?;贒FT的模型要求必須在首幀中手動初始化固定數(shù)量的對象,然后必須在隨后的幀中對這些對象進(jìn)行定位。DFT是一項困難的任務(wù),因為關(guān)于要跟蹤的對象的信息有限,而且這些信息不清楚。結(jié)果,初始邊界框與背景中的感興趣對象近似,并且對象的外觀可能隨著時間的推移而急劇改變。 RK3399PRO圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。遼寧比較好的目標(biāo)跟蹤目標(biāo)跟蹤我們要追蹤的目標(biāo)可以是各式各樣,可能是...
目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對目標(biāo)進(jìn)行特征提取,對感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標(biāo)在下一幀中的位置進(jìn)行預(yù)測。作為計算機(jī)視覺領(lǐng)域的一個熱點研究方向,目標(biāo)跟蹤一直都是一項具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實現(xiàn)實時準(zhǔn)確的跟蹤依舊難以實現(xiàn)??焖僖苿拥钠囋趺存i定跟蹤?可靠目標(biāo)跟蹤應(yīng)用目標(biāo)跟蹤隨著社區(qū)等安防向著智能化的進(jìn)一步發(fā)展,越來越多的領(lǐng)域?qū)鹘y(tǒng)意義上的視頻監(jiān)控提出了更加的嚴(yán)格要求,雖然...
近年來,我國多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車方面,許多公共場所也開始逐步落地應(yīng)用。一車一桿的系統(tǒng),智能識別進(jìn)出入車輛,控制車輛進(jìn)出入,統(tǒng)計車位空缺數(shù),在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機(jī)箱,該機(jī)箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。用于安防監(jiān)控及狀態(tài)監(jiān)測的攝像頭數(shù)量的飛速發(fā)展。貴州目標(biāo)跟蹤廠家電話目標(biāo)跟...
近年來,我國多地智慧城市建設(shè)取得較好的成效,諸多創(chuàng)新技術(shù)和解決方案得到廣泛應(yīng)用。而在智慧停車方面,許多公共場所也開始逐步落地應(yīng)用。一車一桿的系統(tǒng),智能識別進(jìn)出入車輛,控制車輛進(jìn)出入,統(tǒng)計車位空缺數(shù),在很大程度上能夠優(yōu)化公共停車場的交通擁堵等問題,能夠提高安全和通行效率。智慧停車閘道裝有車牌識別的機(jī)箱,該機(jī)箱集攝像頭、圖像處理板、顯示屏、內(nèi)存卡等設(shè)備于一體,其中圖像處理板內(nèi)置車牌識別算法,在攝像頭獲取車牌照片后,板卡算法就能進(jìn)行快速又高精度的信息識別,并上傳數(shù)據(jù)到后端控制中心,能夠有效控制車輛的合理出入,方面管理者優(yōu)化管理。RV1126搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤。如何目標(biāo)跟蹤應(yīng)用目標(biāo)跟...
目標(biāo)跟蹤時,多維度、多層級信息融合也十分重要。為了提高對運(yùn)動目標(biāo)表觀描述的準(zhǔn)確度與可信性,現(xiàn)有的檢測與跟蹤算法通常對時域、空域、頻域等不同特征信息進(jìn)行融合,綜合利用各種冗余、互補(bǔ)信息提升算法的精確性與魯棒性.然而,目前大多算法還只是對單一時間、單一空間的多尺度信息進(jìn)行融合,使用者可以考慮從時間、推理等不同維度,對特征、決策等不同層級的多源互補(bǔ)信息進(jìn)行融合,提升檢測與跟蹤的準(zhǔn)確性。成都慧視開發(fā)的Viztra-HE030圖像處理板采用了RK3588高性能芯片,工業(yè)級的處理能力能夠運(yùn)用到諸多行業(yè)。RK3399圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法...
基于特征匹配的跟蹤方法不考慮運(yùn)動目標(biāo)的整體特征,通過有目的的提取序列圖像中的過零點、邊緣輪廓、線段等相關(guān)特征或是部分特性,并建立匹配模板,對目標(biāo)對象進(jìn)行特征匹配,達(dá)到對目標(biāo)對象跟蹤的目的。假定運(yùn)動目標(biāo)可以由惟一的特征**表達(dá),搜索到該相應(yīng)的特征就認(rèn)為跟蹤上了運(yùn)動目標(biāo)。除了用單一的特征來實現(xiàn)跟蹤外,還可以采用多個特征信息融合在一起作為跟蹤特征。該算法主要包括特征提取和特征匹配兩個方面。其中,特征提取指的是針對所包含的目標(biāo)對象的序列圖像選擇合適的目標(biāo)跟蹤特性。慧視RV1126板卡可以用于大型公共停車場。移動目標(biāo)跟蹤好選擇目標(biāo)跟蹤對于目標(biāo)被暫時遮擋的情況,通過設(shè)定目標(biāo)狀態(tài)為暫時丟失狀態(tài),并以上一次目...
YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進(jìn)行目標(biāo)檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實時應(yīng)用。準(zhǔn)確性較高:通過引入先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標(biāo)定位和類別預(yù)測方面具有較高的準(zhǔn)確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標(biāo),并保持對小目標(biāo)的有效檢測。端到端訓(xùn)練:YOLO算法可以進(jìn)行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實現(xiàn)和使用。工程師以RK3399核心板為基礎(chǔ)進(jìn)行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。智能化目標(biāo)跟蹤應(yīng)用目標(biāo)跟蹤視覺跟蹤技術(shù)是計...
2010年以前,目標(biāo)跟蹤領(lǐng)域大部分采用一些經(jīng)典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標(biāo)的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標(biāo)進(jìn)行建模,比如利用目標(biāo)的顏色分布來描述目標(biāo),然后計算目標(biāo)在下一幀圖像上的概率分布,從而迭代得到局部密集的區(qū)域。Meanshift適用于目標(biāo)的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進(jìn)方法也一直適用至今。成都R...
序列圖像的差異通常是運(yùn)動目標(biāo)檢測和跟蹤的出發(fā)點,認(rèn)為目標(biāo)的運(yùn)動是圖像差異的根本原因。但是,這是建立在背景本身不運(yùn)動的前提下的。因此,在許多跟蹤系統(tǒng)中,比如車載,由于車的振動導(dǎo)致傳感器位置的變化,表現(xiàn)在圖像上就是背景的運(yùn)動,因此在做差圖像和背景自動更新之前,都必須先經(jīng)過配準(zhǔn),即讓所有圖像在都同一個坐標(biāo)系之下,以消除背景的運(yùn)動。在不同的應(yīng)用場合,配準(zhǔn)的方法多種多樣,比如當(dāng)兩個圖像之間只有平移變化時,計算出它們的平移量即可實現(xiàn)配準(zhǔn);由于平移變化對圖像的相位信息影響較大,在頻率域利用相位相關(guān)可以實現(xiàn)配準(zhǔn)。慧視RK3399圖像跟蹤板支持目標(biāo)跟蹤識別目標(biāo)(人、車)。企業(yè)目標(biāo)跟蹤有什么目標(biāo)跟蹤實際上,跟蹤和...
相關(guān)濾波的跟蹤算法始于2012年P(guān).Martins提出的CSK方法,作者提出了一種基于循環(huán)矩陣的核跟蹤方法,并且從數(shù)學(xué)上完美解決了密集采樣(Dense Sampling)的問題,利用傅立葉變換快速實現(xiàn)了檢測的過程。在訓(xùn)練分類器時,一般認(rèn)為離目標(biāo)位置較近的是正樣本,而離目標(biāo)較遠(yuǎn)的認(rèn)為是負(fù)樣本?;仡櫱懊嫣岬降腡LD或Struck,他們都會在每一幀中隨機(jī)地挑選一些塊進(jìn)行訓(xùn)練,學(xué)習(xí)到的特征是這些隨機(jī)子窗口的特征,而CSK作者設(shè)計了一個密集采樣的框架,能夠?qū)W習(xí)到一個區(qū)域內(nèi)所有圖像塊的特征。全國產(chǎn)化的跟蹤板卡哪個公司做的可以?流暢目標(biāo)跟蹤工程目標(biāo)跟蹤 檢測器的輸出通常被用作跟蹤設(shè)備的輸入,跟蹤設(shè)備的輸出...
目標(biāo)檢測和跟蹤是計算機(jī)視覺領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實時目標(biāo)檢測和跟蹤領(lǐng)域具有重要地位的算法。通過引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實時目標(biāo)檢測和跟蹤領(lǐng)域發(fā)揮更大的作用。RK3588作為慧視光電開發(fā)的全國產(chǎn)化工業(yè)級板卡,具備高性能、高精度的優(yōu)點。甘肅目標(biāo)跟蹤解決目標(biāo)跟蹤視覺目標(biāo)跟蹤是指在視頻圖像序列的...
視覺目標(biāo)跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標(biāo)?;趨^(qū)域的跟蹤的基本思想是通過圖像分割或預(yù)先人為確定,提取包含著運(yùn)動目標(biāo)的運(yùn)動變化的區(qū)域范圍作為匹配的目標(biāo)模板,然后把目標(biāo)模板與實時圖像在所有可能位置上進(jìn)行疊加,然后計算某種圖像相似性度量的相應(yīng)值,其比較大相似性相對應(yīng)的位置就是目標(biāo)的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結(jié)果來給跟蹤提供信息,同時也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標(biāo)匹配起來跟蹤目標(biāo)。RK3399處理板如何實現(xiàn)目標(biāo)的識別及跟蹤?***時省力目標(biāo)跟蹤目標(biāo)跟蹤很多跟蹤方法都是對通用目標(biāo)的跟蹤,沒有目標(biāo)的類別先驗。在實際應(yīng)用中,還有一個重要的跟蹤...
成都慧視開發(fā)的圖像跟蹤板能夠?qū)崿F(xiàn)高精度的自動目標(biāo)視頻跟蹤,所謂自動視頻跟蹤,是利用視頻的圖像信號,自動進(jìn)行目標(biāo)的檢測、識別、定位,自動控制云臺和攝像機(jī)的運(yùn)動,跟蹤和鎖定目標(biāo)。過去在安防領(lǐng)域,視頻信號一般都是可見光的攝像機(jī)產(chǎn)生的PAL制或NTSC制的模擬信號;現(xiàn)在,隨著320x240左右分辨率的非制冷的紅外熱象儀的價格進(jìn)一步下降,熱成像傳感器將由jun用領(lǐng)域進(jìn)入安防領(lǐng)域,以彌補(bǔ)CCD攝像機(jī)的夜晚成象質(zhì)量差和非全天候等的問題。慧視RK3399板卡可以用于大型公共停車場。江蘇多系統(tǒng)適配目標(biāo)跟蹤目標(biāo)跟蹤目標(biāo)檢測和跟蹤在許多應(yīng)用中都具有重要的意義,例如智能監(jiān)控、自動駕駛和人機(jī)交互等。傳統(tǒng)的目標(biāo)檢測算法需...
從軟件的角度來看,整個視頻跟蹤系統(tǒng)主要是由電視攝像機(jī)及控制、圖像獲取模塊、圖像顯示模塊、數(shù)據(jù)庫,運(yùn)動檢測,目標(biāo)跟蹤,報警輸入和人機(jī)接口模塊等組成的。視覺計算模塊是視頻跟蹤系統(tǒng)的重點,是實現(xiàn)目標(biāo)檢測和跟蹤的關(guān)鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標(biāo)的檢測和跟蹤是緊密結(jié)合的。檢測是跟蹤的前因,并為跟蹤提供了目標(biāo)的信息(如目標(biāo)的位置,大小,模式和速度估計等),而跟蹤則是檢測的延續(xù),實時利用檢測得到的知識去驗證目標(biāo)的存在。無人機(jī)吊艙能夠通過定制算法和精細(xì)定位技術(shù)實現(xiàn)農(nóng)藥精細(xì)噴灑、農(nóng)作物精細(xì)拋糧等操作。湖北視頻目標(biāo)跟蹤目標(biāo)跟蹤云臺的旋轉(zhuǎn)將直接改變攝像機(jī)的視...
當(dāng)兩個圖像之間還有旋轉(zhuǎn)或比例變化時,往往使用基于控制點的方法進(jìn)行圖像配準(zhǔn)。所謂特征點匹配就是在一幀圖像中尋找具有不變性質(zhì)的結(jié)構(gòu)—特征點,例如,灰度局部極大值、局部邊緣、角等,與另一幀圖像中的同類特征點作匹配,從而求得該兩幀圖像之間的變換關(guān)系。從現(xiàn)實的觀點看,在全部特征點中,只有部分能得到正確的匹配,這是因為特征點尋找算法并非完美無缺。特征點匹配方法具有:處理的數(shù)據(jù)量不斷減少、可能匹配的數(shù)目少于互相關(guān)方法和受照度、幾何的變化影響較小的優(yōu)點。根據(jù)具體的振動情況,選擇合適的特征點和速度較快的匹配策略是該任務(wù)研究的重點。目前的研究工作都致力于圖像間的自動配準(zhǔn),如直接相關(guān)匹配,基于圖像分割技術(shù)的配準(zhǔn),利...
基于特征匹配的跟蹤方法不考慮運(yùn)動目標(biāo)的整體特征,通過有目的的提取序列圖像中的過零點、邊緣輪廓、線段等相關(guān)特征或是部分特性,并建立匹配模板,對目標(biāo)對象進(jìn)行特征匹配,達(dá)到對目標(biāo)對象跟蹤的目的。假定運(yùn)動目標(biāo)可以由惟一的特征**表達(dá),搜索到該相應(yīng)的特征就認(rèn)為跟蹤上了運(yùn)動目標(biāo)。除了用單一的特征來實現(xiàn)跟蹤外,還可以采用多個特征信息融合在一起作為跟蹤特征。該算法主要包括特征提取和特征匹配兩個方面。其中,特征提取指的是針對所包含的目標(biāo)對象的序列圖像選擇合適的目標(biāo)跟蹤特性。RV1126圖像處理板的目標(biāo)識別能力突出。什么目標(biāo)跟蹤售后服務(wù)目標(biāo)跟蹤安全生產(chǎn)一直是發(fā)展過程中不變的話題。當(dāng)前,我國建筑行業(yè)正處于高速發(fā)展階...
在目標(biāo)跟蹤領(lǐng)域,場景信息與目標(biāo)狀態(tài)的融合十分重要,首先,場景信息包含了豐富的環(huán)境上下文信息,對場景信息進(jìn)行分析及充分利用,能夠有效地獲取場景的先驗知識,降低復(fù)雜的背景環(huán)境以及場景中與目標(biāo)相似的物體的干擾;同樣地,對目標(biāo)的準(zhǔn)確描述有助于提升檢測與跟蹤算法的準(zhǔn)確性與魯棒性.總之,嘗試研究結(jié)合背景信息和前景目標(biāo)信息的分析方法,融合場景信息與目標(biāo)狀態(tài),將有助于提高算法的實用性能。慧視光電開發(fā)的圖像處理板,具備高性能、高精度的特點,能夠進(jìn)行精確的目標(biāo)跟蹤。圖像識別跟蹤在邊海防領(lǐng)域應(yīng)用前景廣闊!廣東目標(biāo)跟蹤售后服務(wù)目標(biāo)跟蹤目標(biāo)檢測和跟蹤是計算機(jī)視覺領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You...
視覺跟蹤技術(shù)是計算機(jī)視覺領(lǐng)域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導(dǎo)彈制導(dǎo)、視頻監(jiān)控、機(jī)器人視覺導(dǎo)航、人機(jī)交互、以及醫(yī)療診斷等許多方面有著廣泛的應(yīng)用前景。隨著研究人員不斷地深入研究,視覺目標(biāo)跟蹤在近十幾年里有了突破性的進(jìn)展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機(jī)器學(xué)習(xí)方法,更是結(jié)合了近些年人工智能熱潮—深度學(xué)習(xí)(神經(jīng)網(wǎng)絡(luò))和相關(guān)濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結(jié)果?;垡旳I板卡可以用于大型公共停車場。甘肅目標(biāo)跟蹤互惠互利目標(biāo)跟蹤隨著社區(qū)等安防向著智能化的進(jìn)一步發(fā)展,越來越多的領(lǐng)域?qū)鹘y(tǒng)意義上的視頻監(jiān)控提出了更加的嚴(yán)格要求,雖然傳統(tǒng)監(jiān)控系統(tǒng)已經(jīng)可以滿足人們...
現(xiàn)在城市里面植被豐富,天氣干燥時加上不少樹林落葉、枯枝和枯草,在室外燒紙、點火或亂扔煙頭,就會容易引起火災(zāi)。國家明令禁止在公共場所吸煙,因此除了法律的約束,更加便捷的手段應(yīng)該予以應(yīng)用來彌補(bǔ)人力監(jiān)管的不足。在火星識別領(lǐng)域,慧視光電開發(fā)的RV1126圖像處理板,憑借小巧精悍的性能,優(yōu)異的識別能力,具有重要作用。通過在傳統(tǒng)監(jiān)控、攝像頭等設(shè)備中內(nèi)置RV1126圖像處理板,板卡將自帶目標(biāo)識別算法,能夠?qū)ξ⑿』鹦瞧鸬骄_識別的功能,一旦目標(biāo)區(qū)域出現(xiàn)火星,就能立刻向監(jiān)管人員發(fā)出警報。反應(yīng)時間越快,就越能杜絕火災(zāi)的發(fā)生,而快速響應(yīng)的火星識別技術(shù)就是人力監(jiān)管的得力幫手。給我推薦一個做跟蹤板卡的企業(yè)?重慶數(shù)據(jù)目標(biāo)...
成都慧視光電技術(shù)有限公司基于國內(nèi)的ARMSOC芯片解決方案商瑞芯微處理器,面向嵌入式領(lǐng)域推出處理模塊、顯控主板、工控主板等硬件解決方案,主板支持Android、Linux操作系統(tǒng),支持適配國產(chǎn)統(tǒng)信和麒麟操作系統(tǒng)。例如RK3399處理板采用標(biāo)準(zhǔn)3.5寸嵌入式主板規(guī)范,尺寸146mm*105mm,DC12V供電。主板具有功耗低、體積小、可快速產(chǎn)品化的特點,可應(yīng)用于機(jī)器視覺、零售管理,車載網(wǎng)關(guān),工業(yè)采集網(wǎng)關(guān)等嵌入式行業(yè)市場??蓮V泛應(yīng)用于機(jī)載吊艙、車載輔助、邊海防監(jiān)控、森林防火、電流巡檢、智能周界等領(lǐng)域?;垡昍K3399PRO圖像跟蹤板支持目標(biāo)跟蹤識別目標(biāo)(人、車)。自主可控目標(biāo)跟蹤推薦廠家目標(biāo)跟蹤用...