重慶材料科學(xué)納米力學(xué)測試應(yīng)用

來源: 發(fā)布時間:2024-07-15

原位納米機(jī)械性能試驗技術(shù),原位納米機(jī)械性能試驗技術(shù)是一種應(yīng)用超分辨顯微學(xué)、納米壓痕技術(shù)等手段,通過獨(dú)特的力學(xué)測試方法對納米尺度下的材料機(jī)械性質(zhì)進(jìn)行測試的方法。相比于傳統(tǒng)的拉伸、壓縮等方法,原位納米機(jī)械性能試驗技術(shù)具有更高的精度和更豐富的信息,可以為納米材料的研究提供更加詳細(xì)的數(shù)據(jù)支持。隨著納米尺度下功能性材料的不斷涌現(xiàn),納米力學(xué)測試將成為實現(xiàn)其合理設(shè)計的重要手段之一。原位納米力學(xué)測量技術(shù)在納米材料力學(xué)測試領(lǐng)域具有廣闊的應(yīng)用前景,它不只可以為納米尺度下材料力學(xué)行為的實驗研究提供詳細(xì)的數(shù)據(jù)支撐,而且還可以為新材料的設(shè)計和開發(fā)提供指導(dǎo)。納米力學(xué)測試可應(yīng)用于納米材料、生物材料、涂層等領(lǐng)域的研究和開發(fā)。重慶材料科學(xué)納米力學(xué)測試應(yīng)用

重慶材料科學(xué)納米力學(xué)測試應(yīng)用,納米力學(xué)測試

AFAM 方法較早是由德國佛羅恩霍夫無損檢測研究所Rabe 等在1994 年提出的。1996 年Rabe 等詳細(xì)分析了探針自由狀態(tài)以及針尖與樣品表面接觸情況下微懸臂的動力學(xué)特性,建立了針尖與樣品接觸時共振頻率與接觸剛度之間的定量化關(guān)系。之后,他們還給出了考慮針尖與樣品側(cè)向接觸、針尖高度及微懸臂傾角影響的微懸臂振動特征方程。他們在這方面的主要工作奠定了AFAM 定量化測試的理論基礎(chǔ)。Reinstaedtler 等利用光學(xué)干涉法對探針懸臂梁的振動模態(tài)進(jìn)行了測量。Turner 等采用解析方法和數(shù)值方法對比了針尖樣品之間分別存在線性和非線性相互作用時,點(diǎn)質(zhì)量模型和Euler-Bernoulli 梁模型描述懸臂梁動態(tài)特性的異同。湖北紡織納米力學(xué)測試服務(wù)納米力學(xué)測試可以幫助研究人員了解納米材料的力學(xué)響應(yīng)機(jī)制,從而推動納米科學(xué)的發(fā)展。

重慶材料科學(xué)納米力學(xué)測試應(yīng)用,納米力學(xué)測試

對納米材料和納米器件的研究和發(fā)展來說,表征和檢測起著至關(guān)重要的作用。由于人們對納米材料和器件的許多基本特征、結(jié)構(gòu)和相互作用了解得還不很充分,使其在設(shè)計和制造中存在許多的盲目性,現(xiàn)有的測量表征技術(shù)就存在著許多問題。此外,由于納米材料和器件的特征長度很小,測量時產(chǎn)生很大擾動,以至產(chǎn)生的信息并不能完全表示其本身特性。這些都是限制納米測量技術(shù)通用化和應(yīng)用化的瓶頸,因此,納米尺度下的測量無論是在理論上,還是在技術(shù)和設(shè)備上都需要深入研究和發(fā)展。

納米云紋法,云紋法是在20世紀(jì)60年代興起的物體表面全場變形的測量技術(shù)。從上世紀(jì)80年代以來,高頻率光柵制作技術(shù)已經(jīng)日趨成熟。目前高精度云紋干涉法通常使用的高密度光柵頻率已達(dá)到600~2400線mm,其測量位移靈敏度比傳統(tǒng)的云紋法高出幾十倍甚至上百倍。近年來云紋法的研究熱點(diǎn)已進(jìn)入微納尺度的變形測量,并出現(xiàn)與各種高分辨率電鏡技術(shù)、掃描探針顯微技術(shù)相結(jié)合的趨勢。顯微幾何云紋法,在光學(xué)顯微鏡下通過調(diào)整放大倍數(shù)將柵線放大到頻率小于40線/mm,然后利用分辨率高的感光膠片分別記錄變形前后的柵線,兩種柵線干涉后即可獲得材料表面納米級變形的云紋。通過納米力學(xué)測試,可以優(yōu)化材料的加工工藝,提高產(chǎn)品的性能和品質(zhì)。

重慶材料科學(xué)納米力學(xué)測試應(yīng)用,納米力學(xué)測試

特點(diǎn):能同時實現(xiàn)SEM/FIB高分辨成像和納米力學(xué)性能測試,力學(xué)測量范圍0.5nN-200mN(9個數(shù)量級),位移測量范圍0.05nm-21mm(9個數(shù)量級),五軸(X,Y,Z,旋轉(zhuǎn),傾斜)閉環(huán)控制保證樣品和微力傳感探針的精確對準(zhǔn),能在SEM/FIB較佳工作距離下實現(xiàn)高分辨成像(可達(dá)4mm)以及FIB切割和沉積,五軸(X,Y,Z,旋轉(zhuǎn),傾斜)位移記錄器實現(xiàn)樣品臺上多樣品的自動測試和掃描,導(dǎo)電的微力傳感探針可有效減少荷電效應(yīng),能夠通過力和位移兩種控制模式實現(xiàn)各種力學(xué)測試,例如拉伸、壓縮、彎曲、剪切、循環(huán)和斷裂測試等,電性能測試模塊能夠?qū)崿F(xiàn)力學(xué)和電學(xué)性能同步測試(樣品座配備6個電極)導(dǎo)電的微力傳感探針可有效減少荷電效應(yīng),實現(xiàn)力學(xué)性能測試與其他SEM/FIB原位分析手段聯(lián)用,如EDX、EBSD、離子束沉積和切割,兼容于SEM本身的樣品臺,安裝和卸載快捷方便。發(fā)展高精度、高穩(wěn)定性納米力學(xué)測試設(shè)備,是當(dāng)前科研工作的重要任務(wù)。湖北紡織納米力學(xué)測試服務(wù)

利用納米力學(xué)測試,可以對納米材料的彈性形變和塑性形變進(jìn)行精細(xì)分析。重慶材料科學(xué)納米力學(xué)測試應(yīng)用

目前納米壓痕在科研界和工業(yè)界都得到了普遍的應(yīng)用,但是它仍然存在一些難以克服的缺點(diǎn),比如納米壓痕實際上是對材料有損的測試,尤其是對于薄膜來說;其壓針的曲率半徑一般在50 nm 以上,由于分辨率的限制,不能對更小尺度的納米結(jié)構(gòu)進(jìn)行測試;納米壓痕的掃描功能不強(qiáng),掃描速度相對較慢,無法捕捉材料在外場作用下動態(tài)性能的變化。基于AFM 的納米力學(xué)測試方法是另一類被普遍應(yīng)用的測試方法。1986 年,Binnig 等發(fā)明了頭一臺原子力顯微鏡(AFM)。AFM 克服了之前掃描隧道顯微鏡(STM) 只能對導(dǎo)電樣品或半導(dǎo)體樣品進(jìn)行成像的限制,可以實現(xiàn)對絕緣體材料表面原子尺度的成像,具有更普遍的應(yīng)用范圍。AFM 利用探針作為傳感器對樣品表面進(jìn)行測試,不只可以獲得樣品表面的形貌信息,還可以實現(xiàn)對材料微區(qū)物理、化學(xué)、力學(xué)等性質(zhì)的定量化測試。目前,AFM 普遍應(yīng)用于物理學(xué)、化學(xué)、材料學(xué)、生物醫(yī)學(xué)、微電子等眾多領(lǐng)域。重慶材料科學(xué)納米力學(xué)測試應(yīng)用