深圳納米力學(xué)測試技術(shù)

來源: 發(fā)布時(shí)間:2024-08-27

納米測量技術(shù)是利用改制的掃描隧道顯微鏡進(jìn)行微形貌測量,這個(gè)技術(shù)已成功的應(yīng)用于石墨表面和生物樣本的納米級測量。國外于1982年發(fā)明并使其發(fā)明者Binnig和Rohrer(美國)榮獲1986年物理學(xué)諾貝爾獎(jiǎng)的掃描隧道顯微鏡(STM)。1986年,Binnig等人利用掃描隧道顯微鏡測量近10-18N的表面力,將掃描隧道顯微鏡與探針式輪廓儀相結(jié)合,發(fā)明了原子力顯微鏡,在空氣中測量,達(dá)到橫向精度3n m和垂直方向0.1n m的分辨率。California大學(xué)S.Alexander等人利用光杠桿實(shí)現(xiàn)的原子力顯微鏡初次獲得了原子級分辨率的表面圖像。納米力學(xué)測試可以解決納米材料在制備和應(yīng)用過程中的力學(xué)問題,提高納米材料的性能和穩(wěn)定性。深圳納米力學(xué)測試技術(shù)

深圳納米力學(xué)測試技術(shù),納米力學(xué)測試

借助原子力顯微鏡(AFM)的納米力學(xué)測試法,利用原子力顯微鏡探針的納米操縱能力對一維納米材料施加彎曲或拉伸載荷。施加彎曲載荷時(shí),原子力顯微鏡探針作用在一維納米懸臂梁結(jié)構(gòu)高自山端國雙固支結(jié)構(gòu)的中心位置,彎曲撓度和載荷通過原子力顯微鏡探針懸曾梁的位移和懸臂梁的剛度獲取,依據(jù)連續(xù)力學(xué)理論,由試樣的載荷一撓度曲線獲得其彈性模量、強(qiáng)度和韌性等力學(xué)性能參數(shù)。這種方法加載機(jī)理簡單,相對拉伸法容易操作,缺點(diǎn)是原子力顯微鏡探針的尺寸與被測納米試樣相比較大,撓度較大時(shí)探針的滑動(dòng)以及試樣中心位置的對準(zhǔn)精度嚴(yán)重影響測試精度3、借助微機(jī)電系統(tǒng)(MEMS)技術(shù)的片上納米力學(xué)測試法基于 MEMS 的片上納米力學(xué)測試法采用 MEMS 微加工工藝將微驅(qū)動(dòng)單元、微傳感單元或試樣集成在同一芯片上,通過微驅(qū)動(dòng)單元對試樣施加載荷,微位移與微力檢測單元檢測試樣變形與加載力,進(jìn)面獲取試樣的力學(xué)性能。江西涂層納米力學(xué)測試供應(yīng)納米力學(xué)測試需要使用專屬的納米力學(xué)測試儀器,如納米壓痕儀和納米拉伸儀等。

深圳納米力學(xué)測試技術(shù),納米力學(xué)測試

微納米材料研究中用到的一些現(xiàn)代測試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動(dòng)了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過磁場聚焦成像或者靜電場的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。

納米拉曼光譜法,納米拉曼光譜法是一種非常有用的測試方法,可以用來研究材料的力學(xué)性質(zhì)。該方法利用激光對材料進(jìn)行激發(fā),通過測量材料產(chǎn)生的拉曼散射光譜來獲得材料的力學(xué)信息。納米拉曼光譜法可以提供關(guān)于材料中分子振動(dòng)的信息,從而揭示材料的化學(xué)成分和晶格結(jié)構(gòu)。利用納米拉曼光譜法可以研究材料的應(yīng)力分布、材料的強(qiáng)度以及材料在納米尺度下的變形行為等。納米拉曼光譜法具有非接觸、高靈敏度和高分辨率的特點(diǎn),適用于研究納米尺度材料力學(xué)性質(zhì)的表征。納米力學(xué)測試助力新能源材料研發(fā),提高能量轉(zhuǎn)換效率。

深圳納米力學(xué)測試技術(shù),納米力學(xué)測試

有限元數(shù)值分析方面,Hurley 等分別基于解析模型和有限元模型兩種數(shù)據(jù)分析方法測量了鈮薄膜的壓入模量,并進(jìn)行了對比。Espinoza-Beltran 等考慮探針微懸臂的傾角、針尖高度、梯形橫截面、材料各向異性等的影響,給出了一種將實(shí)驗(yàn)測試和有限元優(yōu)化分析相結(jié)合,確定針尖樣品面外和面內(nèi)接觸剛度的方法。有限元分析方法綜合考慮了實(shí)際情況中的多種影響因素,精度相對較高。Kopycinska-Muller 等研究了AFAM 測試過程中針尖樣品微納米尺度下的接觸力學(xué)行為。Killgore 等提出了一種通過檢測探針接觸共振頻率變化對針尖磨損進(jìn)行連續(xù)測量的方法。納米力學(xué)測試可以解決納米材料在微納尺度下的力學(xué)問題,為納米器件的設(shè)計(jì)和制造提供支持。湖南表面微納米力學(xué)測試實(shí)驗(yàn)室

在進(jìn)行納米力學(xué)測試時(shí),需要注意避免外界干擾和噪聲對測試結(jié)果的影響。深圳納米力學(xué)測試技術(shù)

與傳統(tǒng)硬度計(jì)算不同的是,A 值不是由壓痕照片得到,而是根據(jù) “接觸深度” hc(nm) 計(jì)算得到的。具體關(guān)系式需通過試驗(yàn)來確定,根據(jù)壓頭形狀的不同,一般采用多項(xiàng)式擬合的方法,比如針對三角錐形壓頭,其擬合結(jié)果為:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+ 36. 9式中 “接觸深度”hc由下式計(jì)算得出:hc = h - ε P max/S,式中,ε是與壓頭形狀有關(guān)的常數(shù),對于球形或三角錐形壓頭可以取ε = 0.75。而S的值可以通過對載荷-位移曲線的卸載部分進(jìn)行擬合,再對擬合函數(shù)求導(dǎo)得出,即,式中Q 為擬合函數(shù)。這樣通過試驗(yàn)得到載荷-位移曲線,測量和計(jì)算試驗(yàn)過程中的載荷 P、壓痕深度h和卸載曲線初期的斜率S,就可以得到樣品的硬度值。該技術(shù)通過記錄連續(xù)的載荷-位移、加卸載曲線,可以獲得材料的硬度、彈性模量、屈服應(yīng)力等指標(biāo),它克服了傳統(tǒng)壓痕測量只適用于較大尺寸試樣以及只能獲得材料的塑性性質(zhì)等缺陷,同時(shí)也提高了硬度的檢測精度,使得邊加載邊測量成為可能,為檢測過程的自動(dòng)化和數(shù)字化創(chuàng)造了條件。深圳納米力學(xué)測試技術(shù)