全自動(dòng)多光子顯微鏡峰值功率密度

來源: 發(fā)布時(shí)間:2021-09-28

使用基因編碼的熒光探針可以在突觸和細(xì)胞分辨率下監(jiān)測(cè)體內(nèi)神經(jīng)元信號(hào),這是揭示動(dòng)物神經(jīng)活動(dòng)復(fù)雜機(jī)制的關(guān)鍵。使用雙光子顯微鏡(2PM)可以以亞細(xì)胞分辨率對(duì)鈣離子傳感器和谷氨酸傳感器成像,從而測(cè)量不透明大腦深處的活動(dòng);成像膜電壓變化能直接反映神經(jīng)元活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來說太快。目前電壓成像主要通過寬場(chǎng)顯微鏡實(shí)現(xiàn),但它的空間分辨率較差并且于淺層深度。因此要在不透明的大腦中以高空間分辨率對(duì)膜電壓變化進(jìn)行成像,需要明顯提高2PM的成像速率。多光子顯微鏡作為神經(jīng)科學(xué)重要的研究工具,近年來發(fā)展快速,品牌也眾多。全自動(dòng)多光子顯微鏡峰值功率密度

全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

SternandJeanMarx在評(píng)論中說:祖家能夠在更為精細(xì)的層次研究樹突的功能,這在以前是完全不可能的。新的技術(shù)(如腦片的膜片鉗和雙光子顯微使人們對(duì)樹突的計(jì)算和神經(jīng)信號(hào)處理中的作用有了更好的理解。他們解釋了是樹突模式和形狀多樣性,及其獨(dú)特的電、及其獨(dú)特的電化學(xué)特征使神經(jīng)元完成了一系列的專門任務(wù)。雙光子與共聚焦在發(fā)育生物學(xué)中的應(yīng)用雙光子∶ 每2.5分鐘掃描一次,觀察24小時(shí),發(fā)育到桑椹胚和胚泡階段共聚焦∶每15分鐘掃描一次,觀察8小時(shí)后細(xì)胞分裂停止,不能發(fā)育到桑椹胚和胚泡階段共聚焦激發(fā)時(shí)的細(xì)胞存活率為多光子系統(tǒng)的10~20%。bruker多光子顯微鏡數(shù)據(jù)分析雙光子共聚焦顯微鏡比單光子共聚焦顯微鏡具有更亮的橫向分辨率和縱向分辨率。

全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡(MPM)具有光學(xué)切片和深層成像等功能,這兩個(gè)優(yōu)勢(shì)極大地促進(jìn)了研究者們對(duì)于完整大腦深處神經(jīng)的了解與認(rèn)識(shí)。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個(gè)方面論述了相關(guān)的MPM技術(shù)。想要將神經(jīng)元活動(dòng)與復(fù)雜行為聯(lián)系起來,通常需要對(duì)大腦皮質(zhì)深層的神經(jīng)元進(jìn)行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會(huì)被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強(qiáng)度來解決散射問題,但這會(huì)帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。

從產(chǎn)品類型及技術(shù)方面來看,正置顯微鏡占據(jù)絕大多數(shù)市場(chǎng)。2020年,全球多光子激光掃描正置顯微鏡市場(chǎng)達(dá)到87.30百萬美元,預(yù)計(jì)到2027年該部分市場(chǎng)將達(dá)到154.02百萬美元,年復(fù)合增長率(2021-2027)為8.48%。中國多光子激光掃描正置顯微鏡市場(chǎng)達(dá)到13.32百萬美元,預(yù)計(jì)到2027年該部分市場(chǎng)將達(dá)到25.21百萬美元,年復(fù)合增長率(2021-2027)為9.58%。從產(chǎn)品市場(chǎng)應(yīng)用情況來看,研究機(jī)構(gòu)為主要應(yīng)用領(lǐng)域,2020年約占全球市場(chǎng)46.28%。2020年,全球多光子激光掃描顯微鏡研究機(jī)構(gòu)應(yīng)用消費(fèi)量為174臺(tái),預(yù)計(jì)2027年達(dá)到349臺(tái),2021-2027年復(fù)合增長率(CAGR)為9.72%。多光子激光掃描顯微鏡采用波長較長的紅外激光,能量脈沖式激發(fā),紅外光比可見光在生物組織中的穿透力更強(qiáng)。

全自動(dòng)多光子顯微鏡峰值功率密度,多光子顯微鏡

細(xì)胞在受到外界刺激時(shí),隨著刺激時(shí)間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號(hào)不但不會(huì)繼續(xù)增強(qiáng),反而會(huì)減弱,直至恢復(fù)到未加刺激物時(shí)的水平。對(duì)于細(xì)胞受精過程中 Ca2+熒光信號(hào)的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號(hào)未發(fā)生任何變化,而配子之間發(fā)生融合作用時(shí),Ca2+熒光信號(hào)強(qiáng)度卻會(huì)出現(xiàn)一個(gè)不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對(duì)研究受精發(fā)育的早期信號(hào)及 Ca2+在卵細(xì)胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細(xì)胞分裂、胞吐作用等,Ca2+熒光信號(hào)強(qiáng)度也會(huì)發(fā)生很的變化。多光子顯微鏡的大多數(shù)補(bǔ)償器都采用棱鏡。清醒動(dòng)物多光子顯微鏡技術(shù)

多光子顯微鏡的發(fā)展現(xiàn)狀及未來發(fā)展趨勢(shì)。全自動(dòng)多光子顯微鏡峰值功率密度

以往我們認(rèn)識(shí)的光電效應(yīng)是單光子光電效應(yīng),即一個(gè)電子在極短時(shí)間內(nèi)能吸收到一個(gè)光子而從金屬表面逸出。強(qiáng)激光的出現(xiàn)豐富了人們對(duì)于光電效應(yīng)的認(rèn)識(shí),用強(qiáng)激光照射金屬,由于其光子密度極大,一個(gè)電子在短時(shí)間吸收多個(gè)光子成為可能,從而形成多光子電效應(yīng),這已被實(shí)驗(yàn)證實(shí)。為什么一般討論的光電效應(yīng)都是指單光子光電效應(yīng)呢?這是因?yàn)?,在使用普通光源的情況下,電子吸收兩個(gè)以上光子能量的概率是非常非常小的,幾乎為零。事實(shí)上,愛因斯坦本人就考慮過在強(qiáng)光下發(fā)生光電效應(yīng)的可能性問題。對(duì)此,他有如下的論述:光電效應(yīng)中的一個(gè)電子吸收兩個(gè)光子的幾率不會(huì)大于下雨天兩個(gè)雨滴同事打在一個(gè)螞蟻上的幾率。因此,多光子光電效應(yīng)在實(shí)驗(yàn)上的研究成為可能,是二十世紀(jì)六十年代激光乃至強(qiáng)激光出現(xiàn)以后的事情。有了激光,對(duì)于雙光子光電效應(yīng),在實(shí)驗(yàn)上和理論上均取得了許多成果。利用強(qiáng)激光,人們不僅觀察到雙光子和三光子的光電效應(yīng),甚至觀察到金靶材吸收幾十個(gè)等效光子實(shí)驗(yàn)現(xiàn)象。全自動(dòng)多光子顯微鏡峰值功率密度