安全生產(chǎn)一直是發(fā)展過程中不變的話題。當(dāng)前,我國建筑行業(yè)正處于高速發(fā)展階段,不少建筑工地陸續(xù)開工,建筑行業(yè)安全也越發(fā)受到社會各界的關(guān)注。該行業(yè)以事故高發(fā)、危險系數(shù)高而聞名,建筑工人常常暴露于高處墜落、電氣和化學(xué)危險以及涉及重型機械和車輛的環(huán)境中。一般情況下,工地開工都會對工人進(jìn)行安全教育培訓(xùn),并且設(shè)有安全監(jiān)管人員,但純?nèi)肆ΡO(jiān)管,常常因為疏忽大意釀成悲劇。加入科技的力量如監(jiān)控等設(shè)備來輔助人力監(jiān)管是一個很好的補充,但是傳統(tǒng)監(jiān)控也需要人守在屏幕前,也具有不小的弊端。于是,慧視光電基于AI圖像處理的監(jiān)控監(jiān)管方案就應(yīng)運而生。慧視AI圖像處理板是高精度識別的板卡。浙江數(shù)據(jù)目標(biāo)跟蹤
現(xiàn)在城市里面植被豐富,天氣干燥時加上不少樹林落葉、枯枝和枯草,在室外燒紙、點火或亂扔煙頭,就會容易引起火災(zāi)。國家明令禁止在公共場所吸煙,因此除了法律的約束,更加便捷的手段應(yīng)該予以應(yīng)用來彌補人力監(jiān)管的不足。在火星識別領(lǐng)域,慧視光電開發(fā)的RV1126圖像處理板,憑借小巧精悍的性能,優(yōu)異的識別能力,具有重要作用。通過在傳統(tǒng)監(jiān)控、攝像頭等設(shè)備中內(nèi)置RV1126圖像處理板,板卡將自帶目標(biāo)識別算法,能夠?qū)ξ⑿』鹦瞧鸬骄_識別的功能,一旦目標(biāo)區(qū)域出現(xiàn)火星,就能立刻向監(jiān)管人員發(fā)出警報。反應(yīng)時間越快,就越能杜絕火災(zāi)的發(fā)生,而快速響應(yīng)的火星識別技術(shù)就是人力監(jiān)管的得力幫手。浙江數(shù)據(jù)目標(biāo)跟蹤慧視光電開發(fā)的慧視RK3588圖像處理板,采用了國產(chǎn)高性能CPU。
差圖像作為經(jīng)典、常勝不衰的動目標(biāo)檢測方法,有其合理性,因為運動能夠?qū)е聢D像的變化,相鄰的兩幅或多幅圖像之間的關(guān)系,或當(dāng)前圖像與背景圖像之間的關(guān)系,尤其是圖像差的關(guān)系,能較好地體現(xiàn)出運動所帶來的變化。復(fù)雜背景下的運動目標(biāo)檢測和跟蹤由于有良好的應(yīng)用前景,成為當(dāng)前研究的一個熱點。圖像監(jiān)控系統(tǒng)的出發(fā)點是監(jiān)控移動的目標(biāo),它們或是非法侵入,或是通過關(guān)鍵的場景,總之是移動才帶來了對它們實施監(jiān)控的可能。因此尋找移動的目標(biāo)是圖像監(jiān)控的關(guān)鍵。
然后在下一幀采集的圖像中對目標(biāo)對象進(jìn)行特征提??;特征匹配的過程既是將提取出來的目標(biāo)對象的特征與我們事先已經(jīng)建立的特征模板進(jìn)行匹配,通過與特征模板的相似程度來確定被跟蹤的目標(biāo)對象,實現(xiàn)對目標(biāo)的跟蹤?;谔卣鞯母櫵惴ǖ膬?yōu)點在于速度快、對運動目標(biāo)的尺度、形變和亮度等變化不敏感,能滿足特定場合的處理要求。但由于特征具有稀疏性和不規(guī)則性,所以該算法對于噪聲、遮擋、圖像模糊等比較敏感,如果目標(biāo)發(fā)生旋轉(zhuǎn),則部分特征點會消失,新的特征點會出現(xiàn),因此需要對匹配模板進(jìn)行更新。成都慧視光電技術(shù)有限公司推出基于全國產(chǎn)化RK3588板的高性能圖像跟蹤板卡。
之所以能產(chǎn)生這種可見運動或表觀運動,是因為物體以不同的速度在不同的方向上移動,或者是因為相機在移動(或者兩者都有)在很多應(yīng)用程序中,跟蹤表觀運動都是極其重要的。它可用來追蹤運動中的物體,以測定它們的速度、判斷它們的目的地。對于手持?jǐn)z像機拍攝的視頻,可以用這種方法消除抖動或減小抖動幅度,使視頻更加平穩(wěn)。運動估值還可用于視頻編碼,用以壓縮視頻,便于傳輸和存儲。被跟蹤的運動可以是稀疏的(圖像的少數(shù)位置上有運動,稱為稀疏運動),也可以是稠密的(圖像的每個像素都有運動,稱為稠密運動)跟蹤視頻中的特征點從前面章節(jié)介紹的內(nèi)容可以看出,根據(jù)特殊的點分析圖像,可以使計算機視覺算法更加實高效。慧視RK3399PRO板卡可以用于大型公共停車場。浙江數(shù)據(jù)目標(biāo)跟蹤
智能圖像處理板在邊海防中的應(yīng)用。浙江數(shù)據(jù)目標(biāo)跟蹤
序列圖像的差異通常是運動目標(biāo)檢測和跟蹤的出發(fā)點,認(rèn)為目標(biāo)的運動是圖像差異的根本原因。但是,這是建立在背景本身不運動的前提下的。因此,在許多跟蹤系統(tǒng)中,比如車載,由于車的振動導(dǎo)致傳感器位置的變化,表現(xiàn)在圖像上就是背景的運動,因此在做差圖像和背景自動更新之前,都必須先經(jīng)過配準(zhǔn),即讓所有圖像在都同一個坐標(biāo)系之下,以消除背景的運動。在不同的應(yīng)用場合,配準(zhǔn)的方法多種多樣,比如當(dāng)兩個圖像之間只有平移變化時,計算出它們的平移量即可實現(xiàn)配準(zhǔn);由于平移變化對圖像的相位信息影響較大,在頻率域利用相位相關(guān)可以實現(xiàn)配準(zhǔn)。浙江數(shù)據(jù)目標(biāo)跟蹤