如果把AI視覺比作一個個體,那么深度學(xué)習(xí)便成為這一個體中重要的機體之一,許多功能的存在直接來源且依賴于它。直觀點說,深度學(xué)習(xí)算法成功運用于計算機視覺的實例如人臉識別、圖像**、物體檢測與追蹤等。人工檢測在早期的工業(yè)質(zhì)檢中占有一定的優(yōu)勢,但隨著生產(chǎn)科技的不端更新進步,制造環(huán)節(jié)對于檢驗水平的要求也越來越高,顯然人工檢查已無法滿足,檢測程度越來越復(fù)雜化和精密化使得機器視覺迫切需要被應(yīng)用其中來承擔(dān)、平衡生產(chǎn)的強度及壓力。隨著電子技術(shù)、圖像傳感技術(shù)和計算機技術(shù)的快速發(fā)展,AOI技術(shù)成為表面缺陷檢測的重要手段。新一代AOI檢測
AOI圖像采集的一個關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運動中準確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動作非常重要,如下圖所示,當(dāng)圖像傳感器與機臺移動速度不匹配時造成圖像的拉伸,收縮等變形,所以,載物移動平臺XY方向移動與圖像采集光電傳感器的同步移動影響到數(shù)據(jù)的準確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導(dǎo)軌,電機和運動控制程序是非常必要的。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機械系統(tǒng)的抖動,傳感器溫度等原因?qū)е?,不可避免的使得圖像因含有噪音而變得模糊。給圖像識別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實的圖像信息,除去噪聲的濾波處理必不可少。 浙江新一代智能AOI設(shè)備AOI檢測儀A系統(tǒng)多采用黑白相機成像,提高成像分辨能力,還要考慮圖像運動過程拍攝圖片模糊帶來的不利影響。
本系統(tǒng)采用的卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)(FeedforwardNeuralNetworks),是深度學(xué)習(xí)(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visualperception)機制構(gòu)建,可以進行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識別領(lǐng)域的中心算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時有穩(wěn)定的表現(xiàn)。針對本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進行學(xué)習(xí)和識別。畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據(jù)底板顏色可以自由選擇器件框顏色;3、可依據(jù)客戶需求,自由定義器件中文名;4、不良器件圖靜態(tài)顯示。
圖像采集階段(光學(xué)掃描和數(shù)據(jù)收集)AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準確性對于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。下面我們對光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現(xiàn)識別不同被檢測物體的目的。 圖像傳感器、鏡頭和光源三者組合構(gòu)成了大多數(shù)自動光學(xué)檢測系統(tǒng)中感知單元。
AOI檢測技術(shù)應(yīng)運而生的背景是電子元件集成度與精細化程度高,檢測速度與效率更高,檢測零缺陷的發(fā)展需求。AOI檢測的比較大的優(yōu)點是節(jié)省人力,降低成本,提高生產(chǎn)效率,統(tǒng)一檢測標準和排除人為因素干擾,保證了檢測結(jié)果的穩(wěn)定性,可重復(fù)性和準確性,及時發(fā)現(xiàn)產(chǎn)品的不良,確保出貨質(zhì)量。在人工智能技術(shù)與大數(shù)據(jù)發(fā)展進步中,AOI檢測不僅是一部檢測設(shè)備,對大量不良結(jié)果進行分類和統(tǒng)計,可以發(fā)現(xiàn)不良發(fā)生的原因,在工藝改善和生產(chǎn)良率提升中也正逐步發(fā)揮著更重要的作用,因此,可以預(yù)期未來AOI檢測技術(shù)將在半導(dǎo)體與電子電路檢測中將會發(fā)揮越來越重要的作用。用計算機處理系統(tǒng)代替人腦執(zhí)行數(shù)據(jù)處理,讓AOI檢測系統(tǒng)可以取產(chǎn)制造中的人工目檢環(huán)節(jié)。湖北專業(yè)AOI系統(tǒng)
采用高分辨率工業(yè)相機和智能圖像分析,檢測電子電路板上插件元器件多、錯、漏、反等缺陷。新一代AOI檢測
AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準確性對于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準確的檢出。下面我們對光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現(xiàn)識別不同被檢測物體的目的。新一代AOI檢測
深圳愛為視智能科技有限公司位于西麗街道曙光社區(qū)中山園路1001號TCL科學(xué)園區(qū)E3棟201之218。公司自成立以來,以質(zhì)量為發(fā)展,讓匠心彌散在每個細節(jié),公司旗下智能視覺檢測設(shè)備深受客戶的喜愛。公司將不斷增強企業(yè)重點競爭力,努力學(xué)習(xí)行業(yè)知識,遵守行業(yè)規(guī)范,植根于機械及行業(yè)設(shè)備行業(yè)的發(fā)展。愛為視憑借創(chuàng)新的產(chǎn)品、專業(yè)的服務(wù)、眾多的成功案例積累起來的聲譽和口碑,讓企業(yè)發(fā)展再上新高。