照明光源按照波長分類可以分為可見波長光源,特殊波長光源??梢姴ㄩL光源也就是一般現(xiàn)代工業(yè)AOI檢測設(shè)備中較常用的紅綠藍(lán)LED光源。特殊波長光源一般是指紅外或紫外波長光源,一些特殊材料在可見光范圍內(nèi)吸收差別不大,灰階變化不明顯時(shí)可以考慮采用特殊波長光源,比如說利用紫外光能量高可以激發(fā)熒光材料的原理,檢測具有熒光發(fā)光特性物質(zhì)微殘留時(shí)紫外光源就是一種比較有效的手段,因材料成分與紅外光譜有對(duì)應(yīng)關(guān)系的原理,紅外光源對(duì)不具有發(fā)光性質(zhì)的有機(jī)化合物殘留缺陷檢出就有很大的作用,甚至可以實(shí)現(xiàn)成分分析。特殊光源中,利用偏振光與物體相互作用后偏振態(tài)的變化,利用光學(xué)干涉原理的白光干涉(whitelightinterferometry)在特定缺陷檢測中的得到了應(yīng)用,例如通過相干光的干涉圖案計(jì)算出對(duì)應(yīng)的相位差和光程差,可以測量出被測物體與參考物體之間的差異,且分辨率與精度為可以達(dá)到亞波長。AOI檢測儀A系統(tǒng)多采用黑白相機(jī)成像,提高成像分辨能力,還要考慮圖像運(yùn)動(dòng)過程拍攝圖片模糊帶來的不利影響。山東aivsAOI銷售
圖像采集階段(光學(xué)掃描和數(shù)據(jù)收集)AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個(gè)部分。因?yàn)閿z影得到的圖像被用于與模板做對(duì)比,所以獲取的圖像信息準(zhǔn)確性對(duì)于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點(diǎn),那么也就無法談到準(zhǔn)確的檢出。下面我們對(duì)光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個(gè)部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號(hào)。二極管吸收光線強(qiáng)度不同時(shí)生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強(qiáng)弱,進(jìn)而實(shí)現(xiàn)識(shí)別不同被檢測物體的目的。 河南新一代AOI供應(yīng)圖像傳感器是AOI系統(tǒng)采集圖像的基礎(chǔ),目前市面上大多數(shù)廠商選擇使用面陣相機(jī)。
AIVS-D系列在線PCBA插件AOI通過1200或2000萬高分辨率的工業(yè)相機(jī),從電子電路板頂面拍照,通過AI人工技術(shù),深度學(xué)習(xí)算法、智能圖像分析,檢測電子電路板上插件元器件的缺件、多件、偏移、反向、錯(cuò)件、浮高、OCV(文字識(shí)別)、可支持測試色環(huán)電阻錯(cuò)料。本插件AOI設(shè)備可應(yīng)用于波峰焊爐前或爐后,應(yīng)用在爐后時(shí),可自動(dòng)檢測板卡的旋轉(zhuǎn)角度,保證元件的檢測正確性和穩(wěn)定性。AIVS-D系列在線PCBA插件AOI采用的卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(FeedforwardNeuralNetworks),是深度學(xué)習(xí)(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visualperception)機(jī)制構(gòu)建,可以進(jìn)行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識(shí)別領(lǐng)域的算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時(shí)有穩(wěn)定的表現(xiàn)。針對(duì)本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進(jìn)行學(xué)習(xí)和識(shí)別。
AOI圖像采集的然后一個(gè)關(guān)鍵步驟是控制系統(tǒng),光電傳感器的FOV(視窗)有限,物體高速運(yùn)動(dòng)中準(zhǔn)確地抓拍到清晰的圖像,軟硬件協(xié)調(diào)動(dòng)作非常重要,如下圖所示,當(dāng)圖像傳感器與機(jī)臺(tái)移動(dòng)速度不匹配時(shí)造成圖像的拉伸,收縮等變形,所以,載物移動(dòng)平臺(tái)XY方向移動(dòng)與圖像采集光電傳感器的同步移動(dòng)影響到數(shù)據(jù)的準(zhǔn)確,要在固定光照,等間距下拍攝一幅清晰的圖像,高精度的導(dǎo)軌,電機(jī)和運(yùn)動(dòng)控制程序是非常必要的。首先濾波的定義是將信號(hào)中特定波段頻率濾除的操作,是抑制和防止干擾的一項(xiàng)重要措施。在AOI檢測中,噪聲是造成圖像退化的因素之一,起因是AOI圖像獲取,傳輸過程中,外界雜散光,光電二極管電子噪聲及溫度,光源的不穩(wěn)定不均勻,機(jī)械系統(tǒng)的抖動(dòng),傳感器溫度等原因?qū)е?,不可避免的使得圖像因含有噪音而變得模糊。給圖像識(shí)別,圖像切割等后續(xù)處理工作帶來了困難。因此,為了獲得真實(shí)的圖像信息,除去噪聲的濾波處理必不可少。 使用插件爐前檢測可以將不良品攔截在爐前,從而降低成本,提高效率。
人工智能成為了時(shí)下科技的關(guān)鍵詞之一,生活中有越來越多的人工智能產(chǎn)物走進(jìn)我們的視野,其中AI視覺的這一產(chǎn)業(yè)鏈也在迅速地延伸,AI視覺中的各種硬件和算法也隨之衍生,AI視覺主要通過對(duì)圖像的分析處理進(jìn)而識(shí)別得出相應(yīng)需要的視覺結(jié)果。AI視覺的產(chǎn)生給現(xiàn)代企業(yè)的生產(chǎn)制造提供了更高效的檢測方式,同時(shí)帶來了更多的機(jī)遇,AI視覺檢測的優(yōu)勢遠(yuǎn)遠(yuǎn)超越了人工檢測。 而在現(xiàn)實(shí)中的生產(chǎn)檢測中,AI視覺的亮點(diǎn)則在多方面呈現(xiàn)。愛為視(AIVS)視覺檢測設(shè)備,更是走在行業(yè)前列。AOI檢測儀優(yōu)點(diǎn)是圖像的還原性較好,打光角度容易調(diào)易得到較清晰的圖像,相比線陣相機(jī)誤判率較低。浙江插件AOI檢測
無需設(shè)置參數(shù):1.采用智能算法、自動(dòng)框圖比例高;2.無需抽色、無需調(diào)飽和度、色相、無需調(diào)容忍度、閾值。山東aivsAOI銷售
模板匹配就是先設(shè)定已知模板,已知模板是AOI檢測中沒有缺陷的實(shí)物影像或較小重復(fù)單元影像,通常情況下PCBAOI檢測中以實(shí)物影像為已知模板,F(xiàn)PD AOI檢測中則是較小重復(fù)單元。將采集到的圖像與模板影像進(jìn)行重合比對(duì),然后平移到下一個(gè)單元進(jìn)行同樣比對(duì),出現(xiàn)灰階有差異的部分就被懷疑為缺陷,這里我們給灰階差異設(shè)定一個(gè)閾值,當(dāng)灰階差超過設(shè)定閾值后,就被判定為真正的缺陷。從細(xì)節(jié)上講,閾值的設(shè)定過于嚴(yán)格出現(xiàn)誤判的概率就會(huì)增加,而閾值設(shè)定過于寬松漏檢出的概率就會(huì)增加,因此,被檢測物體的特征提取可以提高比對(duì)的對(duì)位精度,進(jìn)而對(duì)檢測結(jié)果起到了決定性的作用。山東aivsAOI銷售
深圳愛為視智能科技有限公司主要經(jīng)營范圍是機(jī)械及行業(yè)設(shè)備,擁有一支專業(yè)技術(shù)團(tuán)隊(duì)和良好的市場口碑。愛為視致力于為客戶提供良好的智能視覺檢測設(shè)備,一切以用戶需求為中心,深受廣大客戶的歡迎。公司將不斷增強(qiáng)企業(yè)重點(diǎn)競爭力,努力學(xué)習(xí)行業(yè)知識(shí),遵守行業(yè)規(guī)范,植根于機(jī)械及行業(yè)設(shè)備行業(yè)的發(fā)展。愛為視秉承“客戶為尊、服務(wù)為榮、創(chuàng)意為先、技術(shù)為實(shí)”的經(jīng)營理念,全力打造公司的重點(diǎn)競爭力。